











# DOSTA Talks

Towards the Offshore Energy System of the Future Interdisciplinary Insights into Offshore System Integration































# DEVELOPING OFFSHORE STORAGE AND TRANSPORT ALTERNATIVES = DOSTA

#### **BACKGROUND:**

- NWO INITIATED IN 2018 MULTIDISCIPLINARY RESEARCH FOCUSING ON THE NORTH SEA: PHD@SEA
- THE AIM OF PHD@SEA IS TO STIMULATE RESEARCH CONSORTIA TO ADDRESS THE AMIBITION OF THE DUTCH GOVERNMENT TO DEVELOP 75 GW OFFSHORE WIND BY 2050
- DOSTA IS A PHD@SEA PROJECT AND RUNS SINCE 2020



### Who and what is DOSTA

#### **ACADEMIC PARTNERS:**

- UNIVERSITY OF GRONINGEN COVERING THREE ACADEMIC DISCIPLES: SCIENCE, SPATIAL PLANNING AND LAW
- UNIVERSITY OF UTRECHT (COPERNICUS INSTITUTE)
  COVERNING TECHNICAL / ECONOMIC ACADEMIC RESEARCH

#### **INDUSTRIAL PARTNERS:**

EBN, ELEMENT NL, LOYENS & LOEFF, NAM, NEVER (DUTCH ENERGY LAW ASSOCIATION), NEC, NGT, NOGAT, OCEAN GRAZER, SMARTPORT, TENNET, TNO AND VATTENFALL



## Objectives of DOSTA

# TO ADDRESS THE GOAL TO DEVELOP 75 GW OFFSHORE WIND ENERGY VIA FOUR SEPARATE INTERRELATED RESEARCH TOPICS:

- MULTISCALE PHYSICS-BASED MODELS OF NOVEL PUMPED-HYDRO OFFSHORE STORAGE TECHNOLOGY
- OPTIMAL SIZING AND OPERATION OF OFFSHORE INFRASTRUCTURE FOR WIND FARMS COUPLED TO HYDROGEN PRODUCTION, STORAGE AND TRANSPORT
- A LEGAL DESIGN FOR NEW OFFSHORE STORAGE AND TRANSPORT INFRASTRUCTURE
- MARINE SPATIAL PLANNING, ENVIRONMENTAL IMPACT AND LOCATIONAL CHOICE



## Research Approach

# TO ACHIEVE AN INTEGRATED BUT MULTIDISCIPLINARY RESEARCH OUTCOME

- FOUR SEPARATE PHD'S BUT ALSO COMMON RESEARCH OUTCOMES
- ONE OR MORE JOINT ARTICLES
- REGULAR MEETINGS WITH INDUSTRIAL PARTNERS
- INTERNSHIPS
- PUBLIC OUTREACH











Robbert Nienhuis r.m.nienhuis@rug.nl

Faculty of Science and Engineering (FSE)
University of Groningen (UG)





# For the case of energy storage, how much is 1 MWh?





#### 1 MWh also...









Groningen – Paris:

Distance: 352.55 mi or 567.38 km

Driving route: 402.98 mi or 648.54 km





#### Multiscale Physics-Based Models of Novel Pumped-Hydro Offshore Energy Storage

Developing
Offshore
Storage &
Transport
Alternatives

#### **Setup Project**

- 4 year PhD at RUG
- 1 year at Ocean Grazer





#### Research aim

Descriptive model of system behaviour to optimize round-trip efficiency under influence of:

- Isolation and degradation mechanics from the marine-structure interface
- System stability and survivability under internal and external dynamic loading
- Coupling to multi-energy systems, alternative energy carriers in hybrid wind farm systems







#### Multiscale Physics-Based Models of Novel Pumped-Hydro Offshore Energy Storage

#### **Table of Contents**

- PhD Research Setup
- Introduction to Ocean Battery Working Principle
- Ocean Battery Prototype
- Experimental Measurements
- Analytical Model
- Round Trip Efficiency







### Ocean Battery Prototype I





#### Ocean Battery Prototype II

#### Pressure sensors

Used for recording the pressure head - [m] in fluid technology systems

#### Flow sensors

Used for measuring the volumetric - [L/s] flow rate of a liquid





#### Pressure Sensors

- Hydrostatic Pressure
- Flexible Bladder
- Turbine Inlet
- Turbine Outlet
- Rigid Reservoir 1
- Rigid Reservoir 2

#### Flow Sensors

- Pump
- Turbine















#### Model Comparison

#### Measurement Case | Depth = 3.42 [m]





#### Digital Twin - GUI



| Fitting Type               | Amount #                 | $K_{min}[-]$       |
|----------------------------|--------------------------|--------------------|
| Contraction / Inlet        | 1                        | 0.27               |
| Bend 90°                   | 3                        | 0.19               |
| Elbow 90°                  | 1                        | 0.90               |
| Flow Sensor                | 2                        | -                  |
| $S_2$ Section – from sens  | sor p3 to p4             |                    |
| Fitting Type               | #                        | $K_{min}[-]$       |
| Bend 90°                   | 5                        | 0.19               |
| Tee Branch                 | 4                        | 1.80               |
| Turbine Run Through        | 4                        | 0.40               |
| Elbow 90°                  | 2                        | 0.90               |
| Contraction                | 3                        | 0.005              |
| Enlargement                | 3                        | 0.30               |
| S-Bend *                   | 1                        | 0.80               |
| Elbow 90°                  | 1                        | 0.90               |
| $S_3$ Section – from sense | or p4 to p5 <sub>T</sub> |                    |
| Fitting Type               | #                        | $K_{min}[-]$       |
| Ball valve                 | 1                        | 0 (fully open)     |
|                            |                          | 5.5 (1/3 closed)   |
|                            |                          | 200 (fully closed) |
| Elbow 90 Degrees           | 2                        | 0.90               |
| Enlargement / Outlet       | 1                        | 0.41               |

\* K-value assumed to be two times  $K_{45}$ 



#### Efficiency Parameter Overview

#### Round-Trip Efficiency Calculation

 In range with conventional Pumped Hydro Technologies 75 - 80%

### Round Trip Efficiency

#### Scaled-up case-study

- Average Pump Efficiency of 88%\*
- Average Turbine Efficiency of 92%\*
- Total Round Trip Efficiency of 77%
- \* Average values adopted from literature

#### **Energy Output**

Discharging Losses 77%

Polo Umbilical System System Reservoir

Polo Connection

100% Charging Losses

**Energy Input** 

200 Vindillical Areservoir

o System

System

Energy Stored 86%



# Any questions?

**Robbert Nienhuis** 

Faculty of Science and Engineering (FSE), University of Groningen (UG)

r.m.nienhuis@rug.nl



# Harvesting the Wind: Insights into Energy System Optimization

Jan Wiegner

Copernicus Institute of Sustainable Development, University Utrecht

j.f.wiegner@uu.nl



# What is the area requirement for 1GWe of electrolysis?





# Area Requirements of Electrolysis





What is the area requirement for supplying about 20 million tons of hydrogen with electrolysis (estimated H2 production Europe in 2030)?





## Area Requirements of Electrolysis





# How much electricity can be fed back to the grid after conversion to hydrogen?





### Efficiency of Electricity-Hydrogen-Electricity Storage

- How much electricity can be fed back to the grid after conversion to hydrogen?
  - Between 0.85 and 0.95 kWh
  - Between 0.5 and 0.8 kWh
  - Between 0.2 and 0.5 kWh





# How many DC meshed grids exist worldwide?



- How many DC meshed electricity grids exist worldwide?
  - None
  - 3 with only 3 terminals
  - Over 10





### **Electricity Grid expansion**



**Decision Variables** 

Additionally: size and location of additional grid capacities





## **Electricity Grid expansion**





## **Electricity Grid expansion**



- Best measure to reduce BOTH cost and emissions
- 'no regret' measure: This can reduce both: emissions and costs
- Grid expansions help to:
  - Make storage capacitity in other countries available
  - Spatially diversify the renewable portfolio of the whole system



# Coffee Break



# Governance implications for a new offshore energy system

Juul Kusters j.e.h.kusters@rug.nl









## Planning (space for) an energy transition

Governance is an essential part of the system integration discussion:

- For strategic decision-making on desirable futures
- For establishing enabling rules and regulations
- For finding optimal locations





## Planning (space for) an energy transition

Governance is an essential part of the system integration discussion:

For strategic decision-making on desirable futures WHAT?

For establishing enabling rules and regulations HOW?

For finding optimal locations
 WHERE?





## Marine Spatial Planning in the Netherlands

Coordinating ministry: Ministry of Infrastructure and Water Management

#### Other responsibilities with:

- Ministry of Economic Affairs and Climate
- Ministry of Interior and Kingdom Relations
- Ministry of Agriculture, Nature and Food
   Quality .... and more

New plan every 6 years







## Three large challenges



Energy transition → up to 72 GW of offshore wind energy by 2050



Food transition → sustainable and profitable fisheries



Nature transition > recovering the status of the marine environment





# A planning process in its simplest form

Agenda-setting

Implementation

Policy formulation

**Decision-making** 





# A planning process in its simplest form

Agenda-setting

Implementation

Policy formulation

**Decision-making** 





## 1. Agenda-setting

Topics may emerge on the agenda through:

- Stakeholder participation in policy-making
- Close industry-government relations
- Various stakeholder networks









# 1. Agenda-setting

Development of innovative technologies is hindered by:

- Powerful stakeholders shaping the debate
- Short-term orientation of policy
- Lack of rules and regulations





## 1. Agenda-setting

Development of innovative technologies is hindered by:

- Powerful stakeholders shaping the debate
- Short-term orientation of policy
- Lack of rules and regulations

SO: Need for a future-oriented MSP process offering long-term guidance.





## Formulating the marine spatial plan

Agenda-setting

Implementation

Policy formulation

**Decision-making** 





## 2. Policy formulation – environmental assessment

Strategic Environmental Assessment (SEA) aims to integrate environmental considerations into the formulation of policies, plans and programs.

#### Two central elements

- Identify cumulative effects
- Develop and assess alternative approaches for meeting goals





## 2. Policy formulation – environmental assessment

#### However:

- Limited understanding of the marine ecosystem.
- Cyclical nature of MSP process

In the Netherlands, SEA is utilized to bring together existing sectoral North Sea policies, rather than exploring alternative options.



#### DEVELOPING OFFSHORE STORAGE

## Main takeaways

Marine Spatial Planning is about more than just maps and spatial allocation.

What and how questions are equally important!









Integration: Obstacles and Solutions

Liv Malin Andreasson I.m.andreasson@rug.nl



#### Facts and Figures of Offshore Wind Energy Roadmap 2023

#### At a glance

Under the Offshore Wind Energy Roadmap 2023, successful tenders in three designated offshore wind zones have been completed. These are: Borssele (Sites I & II, III & IV, and V) between 2016 and 2018, Hollandse Kust (zuid) in 2018 and 2019 and Hollandse Kust (noord) V in 2020.

#### Key figures (by end of 2023) 4.7 GW 15.8 % wind generation in total electricity consumption 3.500 MW standardised concept of 700 MW per connection by TenneT



#### **KEY DRIVERS**



investment climate

Standardisation

innovations

#### **ACHIEVEMENTS**



- Pre-bid costs and risks for offshore wind developers significantly reduced thanks to implementation of a onestop shop approach.
- Cost saving of around €7 billion for Borssele, and the world's first zero-subsidy offshore wind farm - Hollandse Kust (zuid) Sites I & II.
- Nature Inclusive Design ecology-friendly measures integrated as a basic condition for offshore wind development.
- The capacity of individual Dutch offshore wind farms increased seven fold, up from 110 MW for Egmond aan Zee in 2007 to 760 MW for Hollandse Kust (noord).
- Connection costs for offshore wind farms have been reduced and development time for projects is down to just 3-4 years (from 7-10 years previously).





III & IV, HICH V



#### Legal Design for New Offshore Storage and Transport Infrastructure

Identify legal obstacles and propose legal solutions to facilitate the development of offshore storage and transport infrastructure

- Alternative cable connections
- Electricity (pumped) storage
- Hydrogen production and transport

Research Question: Which legal solutions are required to enable large-scale offshore wind energy developments by providing alternatives for bringing large quantities of offshore renewable energy to the market?



### Offshore Energy System Integration

- Existing laws pertaining to offshore energy activities in the Netherlands regulate each category of offshore energy activities specifically
- Difficult to ascertain which rules apply to new types of offshore energy activities and their interlinkages
- 'Energy system integration' entails linking previously separate players, energy carriers and adjacent sectors of the energy value chain through innovative methods into one large energy system
- (Q) How has the Netherlands used its powers to regulate offshore energy activities?



## **Current Dutch Legislation**

| Legal framework                                                    | Scope of application                                                                           |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Mining Act of 31 October 2002<br>(Mijnbouwwet)                     | establishes rules for the exploration and extraction of minerals and mining-related activities |
|                                                                    | → Applicable offshore                                                                          |
| Wind Energy at Sea Act of 24 June 2015<br>(Wet windenergie op zee) | establishes rules for offshore wind energy                                                     |
|                                                                    | → Applicable offshore                                                                          |
| Water Act of 29 January 2009<br>(Waterwet)                         | establishes rules for the management and use of water systems                                  |
|                                                                    | → Applicable offshore                                                                          |
| Electricity Act of 2 July 1998<br>(Elektriciteitswet)              | establishes rules for the generation, transmission and supply of electricity                   |
|                                                                    | → Limited applicability offshore                                                               |
| Gas Act of 22 June 2000<br>(Gaswet)                                | establishes rules for the transport and supply of gas                                          |
|                                                                    | → Limited applicability offshore                                                               |



## Legal Obstacles: New Energy Storage and Transport Options

| Energy storage and transport options   | Need for legislative changes                                                                                                                                                                                          |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternative Offshore Cable Connections | <ul> <li>Need to amend the relevant provisions of the Wind Energy at Sea Act and the Electricity Act*</li> <li>Need to ensure that the relevant provisions of the Electricity Act* are applicable offshore</li> </ul> |

<sup>\*</sup>see next slide for the forthcoming Energy Act



## Legal Obstacles: New Energy Storage and Transport Options

| Energy storage and transport options       | Need for legislative changes                                                                                                                                                                                                                            |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternative Offshore Cable Connections     | <ul> <li>Need to amend the relevant provisions of the Wind Energy at Sea Act and the Electricity Act*</li> <li>Need to ensure that the relevant provisions of the Electricity Act* are applicable offshore</li> </ul>                                   |
| Offshore Hydrogen Production and Transport | <ul> <li>Need to amend the relevant provisions of the Mining Act and the Gas Act</li> <li>Need to adopt specific provisions on hydrogen production and transport (either in existing legislation or in a new dedicated hydrogen legislation)</li> </ul> |

<sup>\*</sup>see next slide for the forthcoming Energy Act



## Legal Obstacles: New Energy Storage and Transport Options

| Energy storage and transport options       | Need for legislative changes                                                                                                                                                                                                                            |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternative Offshore Cable Connections     | <ul> <li>Need to amend the relevant provisions of the Wind Energy at Sea Act and the Electricity Act*</li> <li>Need to ensure that the relevant provisions of the Electricity Act* are applicable offshore</li> </ul>                                   |
| Offshore Hydrogen Production and Transport | <ul> <li>Need to amend the relevant provisions of the Mining Act and the Gas Act</li> <li>Need to adopt specific provisions on hydrogen production and transport (either in existing legislation or in a new dedicated hydrogen legislation)</li> </ul> |
| Offshore Electricity Storage               | <ul> <li>Need to implement the new EU rules on energy storage and amend the relevant provisions in the Electricity Act*</li> <li>Need to ensure that the relevant provisions of the Electricity Act* are applicable offshore</li> </ul>                 |

<sup>\*</sup>see next slide for the forthcoming Energy Act



#### **Forthcoming Legislation**

- The Energy Act (Energiewet) is a proposed new Act to replace the current Electricity Act and Gas Act and to prepare Dutch energy legislation for the energy transition
- The Energy Act implements the EU Electricity Directive (Directive 2019/944)
   and the EU Electricity Regulation (Regulation 2019/943) from the Clean
   Energy Package into Dutch legislation
- One of the objectives of the Energy Act is to strengthen the legal framework for energy system integration
  - (P) lacks explicit reference to offshore energy system integration



#### **Key Takeaways**

- The legal situation for new energy storage and transport options is uncertain as current laws lack appropriate and/or necessary provisions; to some extent, provisions in relevant laws are not applicable offshore
- Necessary to either adopt specific provisions (or laws) regulating new energy storage and transport options or to move from sector-specific laws for offshore energy activities to a general legal framework for offshore energy activities



## Thank you for your attention

Groningen Centre of Energy Law and Sustainability
University of Groningen

www.gcels.nl

Liv Malin Andreasson l.m.andreasson@rug.nl

# Leaderboard





Thank you! Questions?